Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Mikrochim Acta ; 191(5): 283, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652169

RESUMEN

A new method is proposed for detecting typical melamine dopants in food using surface-enhanced Raman scattering (SERS) biosensing technology. Melamine specific aptamer was used as the identification probe, and gold magnets (AuNPs@MNPs) and small gold nanoparticles (AuNPs@MBA) were used as the basis for Raman detection. The Raman signal of the detection system can directly detect melamine quantitatively. Under optimized conditions, the detection of melamine was carried out in the low concentration range of 0.001-500 mg/kg, the enhancement factor (EF) was 2.3 × 107, and the detection limit was 0.001 mg/kg. The method is sensitive and rapid, and can be used for the rapid detection of melamine in the field environment.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Límite de Detección , Nanopartículas del Metal , Espectrometría Raman , Triazinas , Triazinas/análisis , Triazinas/química , Espectrometría Raman/métodos , Oro/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Contaminación de Alimentos/análisis , Técnicas Biosensibles/métodos , ADN/química
2.
Biol Trace Elem Res ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502261

RESUMEN

Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1ß at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.

3.
Front Endocrinol (Lausanne) ; 15: 1327716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455654

RESUMEN

Background: Adiposity and adipokines are closely associated with obesity-related metabolic abnormalities, but little is known regarding whether abdominal obesity is linked to type 2 diabetes mellitus (T2DM) through circulating adiponectin levels. Thus, this large-population-based study was designed to investigate the mediating effect of adiponectin in the relationship between abdominal obesity and T2DM. Methods: A total of 232,438 adults who lived in Dongguan, Guangdong Province, China, were enrolled in the present study. The circulating adiponectin concentrations were measured using latex-enhanced immunoturbidimetric assay. The association between circulating adiponectin and other clinical parameters was detected by Spearman's correlation analysis. Restricted cubic spline (RCS) regression was also used to address the non-linearity of the relationship between waist circumference and diabetes. Mediation analyses of circulating adiponectin were conducted using linear and logistic regression. Results: Subjects with abdominal obesity had lower levels of circulating adiponectin (P < 0.001). The circulating adiponectin value was inversely related to BMI (r = -0.370, P < 0.001), waist circumference (r = -0.361, P < 0.001), and fasting plasma glucose (r = -0.221, P < 0.001). The RCS plot showed a non-linear relation linking waist circumference with T2DM (P for non-linearity < 0.001). Patients with abdominal obesity presented 2.062 times higher odds of T2DM in comparison with those with non-abdominal obesity (odds ratio, 2.062; 95% confidence interval, 1.969-2.161) after adjusting for confounders. In the mediation analyses, the circulating adiponectin mediated the association between abdominal obesity and T2DM, with a mediation effect of 41.02% after adjustments. The above results were consistent in both men and women. Conclusion: The relationship between abdominal obesity and T2DM is mediated through circulating adiponectin level in adults, suggesting that circulating adiponectin might be a potential predictor for controlling the adverse progression from adiposity to T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Adulto , Humanos , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Obesidad Abdominal/complicaciones , Obesidad Abdominal/epidemiología , Adiponectina , Análisis de Mediación , Obesidad/complicaciones
4.
Toxicology ; 503: 153742, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325558

RESUMEN

Mercuric chloride (HgCl2), a widespread environmental pollutant, induces ferroptosis in chicken embryonic kidney (CEK) cells. Whereas activating transcription factor 4 (ATF4), a critical mediator of oxidative homeostasis, plays a dual role in ferroptosis, but its precise mechanisms in HgCl2-induced ferroptosis remain elusive. This study aims to investigate the function and molecular mechanism of ATF4 in HgCl2-induced ferroptosis. Our results revealed that ATF4 was downregulated during HgCl2-induced ferroptosis in CEK cells. Surprisingly, HgCl2 exposure has no significant impact on ATF4 mRNA level. Further investigation indicated that HgCl2 enhanced the expression of the E3 ligase beta-transducin repeat-containing protein (ß-TrCP) and increased ATF4 ubiquitination. Subsequent findings identified that miR-15b-5p as an upstream modulator of ß-TrCP, with miR-15b-5p downregulation observed in HgCl2-exposed CEK cells. Importantly, miR-15b-5p mimics suppressed ß-TrCP expression and reversed HgCl2-induced cellular ferroptosis. Mechanistically, HgCl2 inhibited miR-15b-5p, and promoted ß-TrCP-mediated ubiquitin degradation of ATF4, thereby inhibited the expression of antioxidant-related target genes and promoted ferroptosis. In conclusion, our study highlighted the crucial role of the miR-15b-5p/ß-TrCP/ATF4 axis in HgCl2-induced nephrotoxicity, offering a new therapeutic target for understanding the mechanism of HgCl2 nephrotoxicity.


Asunto(s)
Ferroptosis , MicroARNs , Embrión de Pollo , Animales , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Pollos/metabolismo , Ubiquitina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Riñón/metabolismo
5.
Animals (Basel) ; 14(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338151

RESUMEN

Zygote arrest-1 (Zar1) and Wilms' tumor 1 (Wt1) play an important role in oogenesis, with the latter also involved in testicular development and gender differentiation. Here, Lczar1 and Lcwt1b were identified in Asian seabass (Lates calcarifer), a hermaphrodite fish, as the valuable model for studying sex differentiation. The cloned cDNA fragments of Lczar1 were 1192 bp, encoding 336 amino acids, and contained a zinc-binding domain, while those of Lcwt1b cDNA were 1521 bp, encoding a peptide of 423 amino acids with a Zn finger domain belonging to Wt1b family. RT-qPCR analysis showed that Lczar1 mRNA was exclusively expressed in the ovary, while Lcwt1b mRNA was majorly expressed in the gonads in a higher amount in the testis than in the ovary. In situ hybridization results showed that Lczar1 mRNA was mainly concentrated in oogonia and oocytes at early stages in the ovary, but were undetectable in the testis. Lcwt1b mRNA was localized not only in gonadal somatic cells (the testis and ovary), but also in female and male germ cells in the early developmental stages, such as those of previtellogenic oocytes, spermatogonia, spermatocytes and spermatids. These results indicated that Lczar1 and Lcwt1b possibly play roles in gonadal development. Therefore, the findings of this study will provide a basis for clarifying the mechanism of Lczar1 and Lcwt1b in regulating germ cell development and the sex reversal of Asian seabass and even other hermaphroditic species.

6.
Diabetes Metab Syndr Obes ; 17: 585-596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347910

RESUMEN

Objective: We aimed to analyze the mechanisms underlying spleen-and-stomach-tonifying, yin-fire-purging, and yang-raising decoction derived from the trimethylamine N-oxide (TMAO) metabolic pathway of intestinal microbiota in the treatment of macrovascular lesions caused by type 2 diabetes mellitus (T2DM). Methods: Hartley-guinea pigs were randomly divided into 3 groups-the blank, model, and intervention groups. The T2DM combined with atherosclerosis guinea pig models were established in the model and intervention groups. After successful modeling, spleen-and-stomach-tonifying, yin-fire-purging, and yang-raising decoction were administered intragastrically to the intervention group, while the same volume of normal saline was administered via gavage to the blank and model groups. After 6 weeks of continuous gavage, guinea pigs were sacrificed in all groups, the colon contents were obtained, and the diversity and structural differences of intestinal microbiota were analyzed via bioinformatics. Serum was collected to detect differences in lipids, TMAO, oxidative stress, and inflammation markers between groups. Results: Compared to the blank group, the species diversity of the intestinal microbiota in the model and intervention groups was significantly reduced. Based on the results of Analysis of Similarities and Multiple Response Permutation Procedure, the microbiota structure of the intervention group was closer to that of the blank group. After modeling, the blood lipid levels of guinea pigs increased significantly, and drug intervention significantly reduced the levels of TC, TG, and LDL-C (P < 0.05). TMAO expression was significantly increased after modeling (P < 0.05), while drug intervention reduced TMAO expression (P < 0.05). Compared to the model group, drug intervention significantly increased the concentrations of SOD while decreasing the concentrations of MDA, ICAM-1, VCAM-1, IL-6, and hs-CRP. Conclusion: Spleen-and-stomach-tonifying, yin-fire-purging, and yang-raising decoction can reduce the risk of macrovascular lesions in T2DM, and its mechanism may be associated with its ability to regulate the TMAO metabolic pathway of intestinal microbiota.

7.
Curr Res Food Sci ; 8: 100679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304002

RESUMEN

Recently, the application of biosensors in food safety assessment has gained considerable research attention. Nevertheless, the evaluation of biosensors' sensitivity, accuracy, and efficiency is still ongoing. The advent of machine learning has enhanced the application of biosensors in food security assessment, yielding improved results. Machine learning has been preliminarily applied in combination with different biosensors in food safety assessment, with positive results. This review offers a comprehensive summary of the diverse machine learning methods employed in biosensors for food safety. Initially, the primary machine learning methods were outlined, and the integrated application of biosensors and machine learning in food safety was thoroughly examined. Lastly, the challenges and limitations of machine learning and biosensors in the realm of food safety were underscored, and potential solutions were explored. The review's findings demonstrated that algorithms grounded in machine learning can aid in the early detection of food safety issues. Furthermore, preliminary research suggests that biosensors could be optimized through machine learning for real-time, multifaceted analyses of food safety variables and their interactions. The potential of machine learning and biosensors in real-time monitoring of food quality has been discussed.

8.
Quant Imaging Med Surg ; 14(1): 640-652, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223035

RESUMEN

Background: Recently, deep learning techniques have been widely used in low-dose computed tomography (LDCT) imaging applications for quickly generating high quality computed tomography (CT) images at lower radiation dose levels. The purpose of this study is to validate the reproducibility of the denoising performance of a given network that has been trained in advance across varied LDCT image datasets that are acquired from different imaging systems with different spatial resolutions. Methods: Specifically, LDCT images with comparable noise levels but having different spatial resolutions were prepared to train the U-Net. The number of CT images used for the network training, validation and test was 2,400, 300 and 300, respectively. Afterwards, self- and cross-validations among six selected spatial resolutions (62.5, 125, 250, 375, 500, 625 µm) were studied and compared side by side. The residual variance, peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity (SSIM) were measured and compared. In addition, network retraining on a small number of image set was performed to fine tune the performance of transfer learning among LDCT tasks with varied spatial resolutions. Results: Results demonstrated that the U-Net trained upon LDCT images having a certain spatial resolution can effectively reduce the noise of the other LDCT images having different spatial resolutions. Regardless, results showed that image artifacts would be generated during the above cross validations. For instance, noticeable residual artifacts were presented at the margin and central areas of the object as the resolution inconsistency increased. The retraining results showed that the artifacts caused by the resolution mismatch can be greatly reduced by utilizing about only 20% of the original training data size. This quantitative improvement led to a reduction in the NRMSE from 0.1898 to 0.1263 and an increase in the SSIM from 0.7558 to 0.8036. Conclusions: In conclusion, artifacts would be generated when transferring the U-Net to a LDCT denoising task with different spatial resolution. To maintain the denoising performance, it is recommended to retrain the U-Net with a small amount of datasets having the same target spatial resolution.

9.
BMC Geriatr ; 24(1): 118, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297201

RESUMEN

BACKGROUND: Fine motor skills are closely related to cognitive function. However, there is currently no comprehensive assessment of fine motor movement and how it corresponds with cognitive function. To conduct a complete assessment of fine motor and clarify the relationship between various dimensions of fine motor and cognitive function. METHODS: We conducted a cross-sectional study with 267 community-based participants aged ≥ 60 years in Beijing, China. We assessed four tests performance and gathered detailed fine motor indicators using Micro-Electro-Mechanical System (MEMS) motion capture technology. The wearable MEMS device provided us with precise fine motion metrics, while Chinese version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. We adopted logistic regression to analyze the relationship between fine motor movement and cognitive function. RESULTS: 129 (48.3%) of the participants had cognitive impairment. The vast majority of fine motor movements have independent linear correlations with MoCA-BJ scores. According to logistic regression analysis, completion time in the Same-pattern tapping test (OR = 1.033, 95%CI = 1.003-1.063), Completion time of non-dominant hand in the Pieces flipping test (OR = 1.006, 95%CI = 1.000-1.011), and trajectory distance of dominant hand in the Pegboard test (OR = 1.044, 95%CI = 1.010-1.068), which represents dexterity, are related to cognitive impairment. Coordination, represented by lag time between hands in the Same-pattern tapping (OR = 1.663, 95%CI = 1.131-2.444), is correlated with cognitive impairment. Coverage in the Dual-hand drawing test as an important indicator of stability is negatively correlated with cognitive function (OR = 0.709, 95%CI = 0.6501-0.959). Based on the above 5-feature model showed consistently high accuracy and sensitivity at the MoCA-BJ score (ACU = 0.80-0.87). CONCLUSIONS: The results of a comprehensive fine-motor assessment that integrates dexterity, coordination, and stability are closely related to cognitive functioning. Fine motor movement has the potential to be a reliable predictor of cognitive impairment.


Asunto(s)
Cognición , Disfunción Cognitiva , Humanos , Anciano , Estudios Transversales , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , China/epidemiología , Pruebas de Estado Mental y Demencia
10.
IEEE Trans Med Imaging ; 43(2): 734-744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37756176

RESUMEN

In flat-panel detector (FPD) based cone-beam computed tomography (CBCT) imaging, the native receptor array is usually binned into a smaller matrix size. By doing so, the signal readout speed could be increased by 4-9 times at the expense of a spatial resolution loss of 50%-67%. Clearly, such manipulation poses a key bottleneck in generating high spatial and high temporal resolution CBCT images at the same time. In addition, the conventional FPD is also difficult in generating dual-energy CBCT images. In this paper, we propose an innovative super resolution dual-energy CBCT imaging method, named as suRi, based on dual-layer FPD (DL-FPD) to overcome these aforementioned difficulties at once. With suRi, specifically, a 1D or 2D sub-pixel (half pixel in this study) shifted binning is applied instead of the conventionally aligned binning to double the spatial sampling rate during the dual-energy data acquisition. As a result, the suRi approach provides a new strategy to enable high spatial resolution CBCT imaging while at high readout speed. Moreover, a penalized likelihood material decomposition algorithm is developed to directly reconstruct the high resolution bases from these dual-energy CBCT projections containing sub-pixel shifts. Numerical and physical experiments are performed to validate this newly developed suRi method with phantoms and biological specimen. Results demonstrate that suRi can significantly improve the spatial resolution of the CBCT image. We believe this developed suRi method would greatly enhance the imaging performance of the DL-FPD based dual-energy CBCT systems in future.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico , Tomografía Computarizada de Haz Cónico/métodos , Fantasmas de Imagen , Probabilidad
11.
Appl Opt ; 62(33): 8724-8731, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38038017

RESUMEN

Aiming at the miniaturization and rapid imaging requirements of a portable confocal Raman system, a MEMS-based portable confocal Raman spectroscopy rapid imaging method is proposed in this study. This method combines the dual 2D MEMS mirror scanning method and the grid-by-grid scanning method. The dual 2D MEMS mirror scanning method is used for the miniaturization design of the system, and the grid-by-grid scanning method is used for rapid imaging of Raman spectroscopy. Finally, the rapid imaging and miniaturization design of a portable confocal Raman spectroscopy system are realized. Based on this method, a portable confocal Raman spectroscopy rapid imaging system with an optical probe size of just 98m m×70m m×40m m is constructed. The experimental results show that the imaging speed of the system is 45 times higher than that of the traditional point-scan confocal Raman system, and the imaging speed can be further improved according to the requirements. In addition, the system is used to swiftly identify agate ore, and the material composition distribution image over a 126µm 2×126µm 2 region is obtained in just 16 min. This method provides a new solution for the rapid imaging and miniaturization design of the confocal Raman system, as well as a new technical means for rapid detection in deep space exploration, geological exploration, and field detection.

12.
Phys Med Biol ; 69(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048627

RESUMEN

Objective.This study aims at investigating a novel super resolution CBCT imaging approach with a dual-layer flat panel detector (DL-FPD).Approach.With DL-FPD, the low-energy and high-energy projections acquired from the top and bottom detector layers contain over-sampled spatial information, from which super-resolution CT images can be reconstructed. A simple mathematical model is proposed to explain the signal formation procedure in DL-FPD, and a dedicated recurrent neural network, named suRi-Net, is developed based upon the above imaging model to nonlinearly retrieve the high-resolution dual-energy information. Physical benchtop experiments are conducted to validate the performance of this newly developed super-resolution CBCT imaging method.Main Results.The results demonstrate that the proposed suRi-Net can accurately retrieve high spatial resolution information from the low-energy and high-energy projections of low spatial resolution. Quantitatively, the spatial resolution of the reconstructed CBCT images from the top and bottom detector layers is increased by about 45% and 54%, respectively.Significance.In the future, suRi-Net will provide a new approach to perform high spatial resolution dual-energy imaging in DL-FPD-based CBCT systems.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada de Haz Cónico Espiral , Tomografía Computarizada de Haz Cónico/métodos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
13.
Device ; 1(4)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37990694

RESUMEN

Conventional electrical neuromodulation techniques are constrained by the need for invasive implants in neural tissues, whereas methods using optogenetic are subjected to genetic alterations and hampered by the poor tissue penetration of visible light. Photovoltaic neuromodulation using light from the second near-infrared (NIR-II) spectrum, which minimizes scattering and enhances tissue penetration, shows promise as an alternative to existing neuromodulation technologies. NIR-II light has been used in deep-tissue imaging and in deep-brain photothermal neuromodulation via nanotransducers. This Perspective will provide an overview for the underpinning mechanisms of photovoltaic neuromodulation and identify avenues for future research in materials science and bioengineering that can further advance NIR-II photovoltaic neuromodulation methods.

14.
Poult Sci ; 102(11): 103053, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716231

RESUMEN

Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.


Asunto(s)
Calcio , Células Satélite del Músculo Esquelético , Animales , Calcio/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Pollos/metabolismo , Estrés del Retículo Endoplásmico , Calcio de la Dieta , Apoptosis , Adenosina Trifosfatasas , Selenoproteínas/genética , Selenoproteínas/metabolismo
15.
Biomed Pharmacother ; 166: 115355, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647692

RESUMEN

Cervical cancer is a serious threat to women's health globally. Therefore, identifying key molecules associated with cervical cancer progression is essential for drug development, disease monitoring, and precision therapy. Recently, TGF-ß (transforming growth factor-beta) has been identified as a promising target for cervical cancer treatment. For advanced cervical cancer, TGF-ß participates in tumor development by improving metastasis, stemness, drug resistance, and immune evasion. Accumulating evidence demonstrates that TGF-ß blockade effectively improves the therapeutic effects, especially immunotherapy. Currently, agents targeting TGF-ß and immune checkpoints such as PD-L1 have been developed and tested in clinical studies. These bispecific antibodies might have the potential as therapeutic agents for cervical cancer treatment in the future.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/terapia , Inmunoterapia , Desarrollo de Medicamentos , Factor de Crecimiento Transformador beta
16.
Aquac Nutr ; 2023: 7965735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303609

RESUMEN

Branched-chain amino acids (BCAAs) can be critically involved in skeletal muscle growth and body energy homeostasis. Skeletal muscle growth is a complex process; some muscle-specific microRNAs (miRNAs) are involved in the regulation of muscle thickening and muscle mass. Additionally, the regulatory network between miRNA and messenger RNA (mRNA) in the modulation of the role of BCAAs on skeletal muscle growth in fish has not been studied. In this study, common carp was starved for 14 days, followed by a 14-day gavage therapy with BCAAs, to investigate some of the miRNAs and genes that contribute to the regulation of normal growth and maintenance of skeletal muscle in response to short-term BCAA starvation stress. Subsequently, the transcriptome and small RNAome sequencing of carp skeletal muscle were performed. A total of 43,414 known and 1,112 novel genes were identified, in addition to 142 known and 654 novel miRNAs targeting 22,008 and 33,824 targets, respectively. Based on their expression profiles, 2,146 differentially expressed genes (DEGs) and 84 differentially expressed miRNA (DEMs) were evaluated. Kyoto Encyclopedia of Genes and Genome pathways, including the proteasome, phagosome, autophagy in animals, proteasome activator complex, and ubiquitin-dependent protein catabolic process, were enriched for these DEGs and DEMs. Our findings revealed the role of atg5, map1lc3c, ctsl, cdc53, psma6, psme2, myl9, and mylk in skeletal muscle growth, protein synthesis, and catabolic metabolism. Furthermore, miR-135c, miR-192, miR-194, and miR-203a may play key roles in maintaining the normal activities of the organism by regulating genes related to muscle growth, protein synthesis, and catabolism. This study on transcriptome and miRNA reveals the potential molecular mechanisms underlying the regulation of muscle protein deposition and provides new insights into genetic engineering techniques to improve common carp muscle development.

17.
Opt Express ; 31(12): 18888-18897, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381318

RESUMEN

In this paper, a low-complexity optimized detection scheme consisting of a post filter with weight sharing (PF-WS) and cluster-assisted log-maximum a posteriori estimation (CA-Log-MAP) is proposed. Besides, a modified equal-width discrete (MEWD) clustering algorithm is proposed to eliminate the training process during clustering. After channel equalization, optimized detection schemes improve performance by suppressing the in-band noise raised by the equalizers. The proposed optimized detection scheme was experimentally performed in a C-band 64-Gb/s on-off keying (OOK) transmission system over 100-km standard single-mode fiber (SSMF) transmission. Compared with the optimized detection scheme with the lowest complexity, the proposed method saves 69.23% required number of real-valued multiplications per symbol (RNRM) at 7% hard-decision forward error correction (HD-FEC). In addition, when the detection performance reaches saturation, the proposed CA-Log-MAP with MEWD saves 82.93% RNRM. Compared with the classic k-means clustering algorithm, the proposed MEWD has the same performance without a training process. To the best of our knowledge, this is the first time clustering algorithms have been applied to optimize decision schemes.

18.
Aging Dis ; 14(4): 1292-1310, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163426

RESUMEN

Due to its extremely complex pathogenesis, no effective drugs to prevent, delay progression, or cure Alzheimer's disease (AD) exist at present. The main pathological features of AD are senile plaques composed of ß-amyloid, neurofibrillary tangles formed by hyperphosphorylation of the tau protein, and degeneration or loss of neurons in the brain. Many risk factors associated with the onset of AD, including gene mutations, aging, traumatic brain injury, endocrine and cardiovascular diseases, education level, and obesity. Growing evidence points to chronic stress as one of the major risk factors for AD, as it can promote the onset and development of AD-related pathologies via a mechanism that is not well known. The use of murine stress models, including restraint, social isolation, noise, and unpredictable stress, has contributed to improving our understanding of the relationship between chronic stress and AD. This review summarizes the evidence derived from murine models on the pathological features associated with AD and the related molecular mechanisms induced by chronic stress. These results not only provide a retrospective interpretation for understanding the pathogenesis of AD, but also provide a window of opportunity for more effective preventive and identifying therapeutic strategies for stress-induced AD.

19.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239957

RESUMEN

Copiotrophic bacteria that respond rapidly to nutrient availability, particularly high concentrations of carbon sources, play indispensable roles in marine carbon cycling. However, the molecular and metabolic mechanisms governing their response to carbon concentration gradients are not well understood. Here, we focused on a new member of the family Roseobacteraceae isolated from coastal marine biofilms and explored the growth strategy at different carbon concentrations. When cultured in a carbon-rich medium, the bacterium grew to significantly higher cell densities than Ruegeria pomeroyi DSS-3, although there was no difference when cultured in media with reduced carbon. Genomic analysis showed that the bacterium utilized various pathways involved in biofilm formation, amino acid metabolism, and energy production via the oxidation of inorganic sulfur compounds. Transcriptomic analysis indicated that 28.4% of genes were regulated by carbon concentration, with increased carbon concentration inducing the expression of key enzymes in the EMP, ED, PP, and TCA cycles, genes responsible for the transformation of amino acids into TCA intermediates, as well as the sox genes for thiosulfate oxidation. Metabolomics showed that amino acid metabolism was enhanced and preferred in the presence of a high carbon concentration. Mutation of the sox genes decreased cell proton motive force when grown with amino acids and thiosulfate. In conclusion, we propose that copiotrophy in this Roseobacteraceae bacterium can be supported by amino acid metabolism and thiosulfate oxidation.


Asunto(s)
Compuestos de Azufre , Tiosulfatos , Tiosulfatos/metabolismo , Oxidación-Reducción , Compuestos de Azufre/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo
20.
Light Sci Appl ; 12(1): 129, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248287

RESUMEN

Raman and Brillouin scattering are sensitive approaches to detect chemical composition and mechanical elasticity pathology of cells in cancer development and their medical treatment researches. The application is, however, suffering from the lack of ability to synchronously acquire the scattering signals following three-dimensional (3D) cell morphology with reasonable spatial resolution and signal-to-noise ratio. Herein, we propose a divided-aperture laser differential confocal 3D Geometry-Raman-Brillouin microscopic detection technology, by which reflection, Raman, and Brillouin scattering signals are simultaneously in situ collected in real time with an axial focusing accuracy up to 1 nm, in the height range of 200 µm. The divided aperture improves the anti-noise capability of the system, and the noise influence depth of Raman detection reduces by 35.4%, and the Brillouin extinction ratio increases by 22 dB. A high-precision multichannel microspectroscopic system containing these functions is developed, which is utilized to study gastric cancer tissue. As a result, a 25% reduction of collagen concentration, 42% increase of DNA substances, 17% and 9% decrease in viscosity and elasticity are finely resolved from the 3D mappings. These findings indicate that our system can be a powerful tool to study cancer development new therapies at the sub-cell level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...